Direct Atomic-scale Observation Using Electron Diffraction Microscopy
نویسندگان
چکیده
منابع مشابه
Atomic resolution three-dimensional electron diffraction microscopy.
We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 A from 29 simulated noisy diffraction patterns....
متن کاملElectron Diffraction Using Transmission Electron Microscopy
Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈1...
متن کاملDirect observation of microtubule treadmilling by electron microscopy
Using an immunoelectron microscopic procedure, we directly observed the concurrent addition and loss of chicken brain tubulin subunits from the opposite ends of microtubules containing erythrocyte tubulin domains. The polarity of growth of the brain tubulin on the ends of erythrocyte microtubules was determined to be similar to growth off the ends of Chlamydomonas axonemes. The flux rate for br...
متن کاملDirect observations of atomic diffusion by scanning transmission electron microscopy.
The feasibility of using a high-resolution scanning transmission electron microscope to study the diffusion of heavy atoms on thin film substrates of low atomic number has been investigated. We have shown that it is possible to visualize the diffusion of individual uranium atoms adsorbed to thin carbon film substrates and that the observed motion of the atoms does not appear to be induced by th...
متن کاملDirect observation of atomic scale graphitic layer growth.
The demand for better understanding of the mechanism of soot formation is driven by the negative environmental and health impact brought about by the burning of fossil fuels. While soot particles accumulate most of their mass from surface reactions, the mechanism for surface growth has so far been characterized primarily by measurements of the kinetics. Here we provide atomic-scale scanning tun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Surface Finishing Society of Japan
سال: 2008
ISSN: 0915-1869,1884-3409
DOI: 10.4139/sfj.59.768